

IndusSearch Engine Documentation

Indus Search Engine, developed by Endurasolution, is built on Next.js, Typesense, and Node.js.
This documentation provides all the necessary configurations for a more stable installation.

Requirements

●​ Two or Three Server (if typesense and site install same server then Two server need)
●​ Ubuntu latest or above 20 version need
●​ Typesense latest verison installed
●​ Optional (try to use best latency server and 1Gbps port speed)
●​ Server minimum 8gbram,4cpu,80gb ssd

Installation

First We need to install Typesense on ubuntu server

To install Typesense on an Ubuntu server, you can use the official Typesense apt repository.
Here are the commands to run in your terminal.

Step 1: Add the Typesense apt repository

First, add the GPG key and the repository to your system's software sources.

curl -O https://download.typesense.com/typesense-api/typesense-api-key-2023.pub && \
sudo mv typesense-api-key-2023.pub /usr/share/keyrings/typesense-api-key-2023.pub && \
echo "deb [signed-by=/usr/share/keyrings/typesense-api-key-2023.pub]
https://download.typesense.com/typesense-api/ubuntu $(lsb_release -sc) main" | sudo tee
/etc/apt/sources.list.d/typesense.list

Step 2: Update your package list

Next, update your package list to include the newly added repository.

sudo apt-get update

Step 3: Install Typesense

Now, install the Typesense server package.

sudo apt-get install typesense-server

Step 4: Configure and start Typesense

Typesense is automatically started and runs as a service after installation. The configuration file
is located at /etc/typesense/typesense-server.conf. You can edit this file to change
settings like the API key or data directory.

You can check the status of the Typesense service with this command:

sudo systemctl status typesense-server

If you need to start, stop, or restart the service, use the following commands:

sudo systemctl start typesense-server
sudo systemctl stop typesense-server
sudo systemctl restart typesense-server

When Typesense is installed on Ubuntu via the DEB package, the admin API key is
automatically generated and can be found in the configuration file.

Finding the API Key

To view the contents of the configuration file, use the following command in your terminal:

sudo cat /etc/typesense/typesense-server.conf

Inside this file, you'll find a line that looks like this:

api-key = <your_api_key_here>

The string of characters after api-key = is the admin API key. This key has full administrative
permissions, so it's important to keep it secure. The Typesense documentation recommends
using this key only to create more specific, scoped keys for your applications and not to use it
directly in a production environment.

Next Nginx Install with reverse proxy to this typesense

Here is how you can install Nginx and configure it as a reverse proxy for Typesense on an
Ubuntu server.

Step 1: Install Nginx

First, update your package index and then install Nginx using apt.

sudo apt update
sudo apt install nginx

After the installation is complete, Nginx will automatically start running as a service. You can
check its status to confirm it's active.

sudo systemctl status nginx

Step 2: Configure the Nginx Reverse Proxy

You need to create a new Nginx server block configuration file to act as the reverse proxy for
Typesense.

Navigate to the sites-available directory:​
​
cd /etc/nginx/sites-available/

Create a new configuration file. You can name it something descriptive like
typesense.conf.​
​
sudo nano typesense.conf

1.​

Add the reverse proxy configuration. Paste the following code into the file. Be sure to replace
your_domain_or_ip with your server's domain name or public IP address. Typesense, by
default, runs on port 8108.​
​
server {
 listen 80;
 server_name your_domain_or_ip;

 location / {
 proxy_pass http://localhost:8108;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
}

2.​ This configuration tells Nginx to:
○​ listen on port 80 for HTTP requests.
○​ server_name identifies the domain or IP it should respond to.
○​ location / directs all incoming requests to the root of your domain.
○​ proxy_pass http://localhost:8108; is the most important part, as it forwards

those requests to the Typesense server running on the local machine on port
8108.

○​ proxy_set_header directives ensure the original client's IP and other
important information are passed along to Typesense.

3.​ Save and close the file. In nano, press Ctrl + X, then Y, and then Enter.

Step 3: Enable the Configuration

To activate your new configuration, you need to create a symbolic link from the
sites-available directory to the sites-enabled directory.

sudo ln -s /etc/nginx/sites-available/typesense.conf /etc/nginx/sites-enabled/

Step 4: Test and Restart Nginx

Before restarting the service, it's a good practice to test the Nginx configuration for syntax
errors.

sudo nginx -t

If the output shows syntax is ok and test is successful, you can safely restart Nginx
to apply the changes.

sudo systemctl restart nginx

Now, all HTTP requests to your server's domain or IP address on port 80 will be routed to your
Typesense instance running on port 8108.

SSL Adding

Adding a free SSL certificate from Let's Encrypt to your Nginx reverse proxy is a standard and
highly recommended process. The tool to automate this is Certbot.

Here's a step-by-step guide to get it done on your Ubuntu server.

Prerequisites

●​ You have a domain name registered (e.g., example.com).
●​ Your domain's DNS records are pointing to the public IP address of your server.
●​ You have Nginx installed and configured with a server block for your domain on port 80

(as you did in the previous step).

Step 1: Install Certbot and the Nginx plugin

The certbot package and its Nginx plugin are available in Ubuntu's default repositories.

sudo apt update
sudo apt install certbot python3-certbot-nginx

Step 2: Ensure Nginx configuration is correct

Certbot needs to be able to find the server_name directive in your Nginx configuration file to
correctly configure the SSL certificate.

Open your Nginx configuration file for Typesense:

sudo nano /etc/nginx/sites-available/typesense.conf

Make sure the server_name line is correctly set to your domain name. It should look like this:

server_name example.com www.example.com;

If you made any changes, save the file (Ctrl + X, then Y, then Enter) and test your Nginx
configuration syntax.

sudo nginx -t

If the test is successful, reload Nginx to apply the changes.

sudo systemctl reload nginx

Step 3: Allow HTTPS traffic through the firewall

If you have a firewall like UFW enabled, you need to allow HTTPS traffic on port 443. Nginx
registers a few profiles with UFW during installation.

Check your current UFW status:​
Bash​
sudo ufw status

1.​ You'll likely see Nginx HTTP is allowed.

Allow the Nginx Full profile (which includes both HTTP and HTTPS traffic) and remove the
old rule.​
​
sudo ufw allow 'Nginx Full'
sudo ufw delete allow 'Nginx HTTP'

2.​ Your status should now show Nginx Full is allowed.

Step 4: Obtain and Install the SSL Certificate

Now you can run Certbot with the Nginx plugin to automatically obtain and install the certificate.

Bash
sudo certbot --nginx -d example.com -d www.example.com

●​ --nginx: This flag tells Certbot to use the Nginx plugin to modify the configuration file.
●​ -d example.com -d www.example.com: This specifies the domains you want the

certificate for.

When you run this command for the first time, Certbot will prompt you for a few things:

●​ An email address for urgent renewal notices.
●​ To agree to the Terms of Service.
●​ Whether to redirect HTTP traffic to HTTPS. It is highly recommended to choose the

option to redirect all traffic.

Certbot will then automatically handle the domain verification, obtain the certificate, modify your
Nginx configuration file to use HTTPS, and set up automatic renewal.

Step 5: Verify automatic renewal

Certbot automatically creates a systemd timer or cron job to renew your certificates before they
expire. You can test this process with a "dry-run" to ensure it's working correctly.

Bash
sudo certbot renew --dry-run

If the dry run completes without errors, your certificates will renew automatically in the
background.

After these steps, your Typesense API will be accessible securely over HTTPS.

Now the Typesense is installed ,Next is Main Website install

To set up your Next.js project with Typesense and manage your environment variables, you'll
need to follow a few steps, including installing Node.js, creating the Next.js app, and configuring
the .env.example file.

Step 1: Install Node.js

First, ensure you have Node.js installed on your server, as it's a prerequisite for running Next.js
and npm. Using a version manager like NVM (Node Version Manager) is recommended as it
allows you to easily switch between different Node.js versions.

To install NVM on Ubuntu, run this command:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

After the installation is complete, close and reopen your terminal, or run source ~/.bashrc to
activate NVM.

Now, you can install the latest stable version of Node.js and npm:

nvm install --lts
nvm use --lts

Step 2: Upload a Next.js App Script

Next, upload the app source code to server any folder is best option example i upload the
source to folder search then go to the folder using command ​
​
cd /search

Step 3: Install the Package

npm install

Step 4: Configure the .env file

The .env.example file you provided is a template for your project's configuration. You need to
create a new file named .env and populate it with your specific details. Never commit the
.env file to version control (Git), as it contains sensitive information.

Edit the file the file:​
​
nano .env.example .env

Edit the .env file: Open the .env file and replace the placeholder values with your actual
configuration details.​
.env

Typesense Configuration
TYPESENSE_HOST=your-typesense-domain.com # Use the domain you set up with Nginx
and Certbot
TYPESENSE_PORT=443 # Use port 443 for HTTPS
TYPESENSE_PROTOCOL=https # Use https for a secure connection
TYPESENSE_API_KEY=your_generated_api_key_from_typesense_server_conf

YouTube API (for video search)
YOUTUBE_API_KEY=your-youtube-api-key

Next.js Configuration
NEXT_PUBLIC_APP_URL=https://your-domain.com # Change this to your live domain URL

SMTP Email Configuration
SMTP_HOST=smtp.gmail.com
SMTP_PORT=587
SMTP_SECURE=auto
SMTP_USER=your-email@gmail.com
SMTP_PASS=your-app-password # Use an app password, not your regular email
password
SMTP_FROM=noreply@indussearch.com

Razorpay Payment Configuration
RAZORPAY_KEY_ID=your-razorpay-key-id
RAZORPAY_KEY_SECRET=your-razorpay-key-secret

ALLOW_ADMIN_REGISTER=true

1.​ Next.js automatically exposes variables prefixed with NEXT_PUBLIC_ to the client-side,
while keeping other variables secure on the server. The NEXT_PUBLIC_APP_URL
variable is correctly set up for this.

Step 5: Start the Next.js Development Server

After setting up the .env file, you can start your Next.js development server to begin building
your application.

npm run dev​
​
This will demo run the app on server ip with port ​
​
If server ip is 192.25.35.2 then port is 3000
Then test with http://192.25.35.2:3000​
​

Configuring Nginx for a Next.js application is a crucial step for production deployment. The most
common setup is to use Nginx as a reverse proxy, which forwards requests to your running
Next.js application, typically on localhost:3000. This also allows you to handle SSL
(HTTPS), load balancing, and serve static assets more efficiently.

Step 1: Build your Next.js application

Before you can run the application, you need to build it for production. Navigate to your project
directory and run the following command:

npm run build

This command creates a .next folder with the optimized production build.

http://192.25.35.2:3000

Step 2: Start your Next.js server

Next.js needs to be running in the background for Nginx to proxy requests to it. A tool like PM2
is highly recommended to manage the Node.js process and ensure it stays online, restarting
automatically if it crashes.

Install PM2 globally:​
​
sudo npm install -g pm2

1.​

Start your Next.js application with PM2:​
​
pm2 start npm --name "indus-search" -- start

2.​ Replace "indus-search" with a name for your application. This command will start
the application and keep it running in the background. You can check its status with pm2
status.

Ensure PM2 starts on reboot:​
​
pm2 startup
pm2 save

Step 3: Configure Nginx as a Reverse Proxy

You'll create a new Nginx server block configuration for your Next.js application.

Create a new configuration file:​
​
sudo nano /etc/nginx/sites-available/indus-search.conf

1.​ You can replace indus-search.conf with your domain name.

Add the configuration. Paste the following code into the file. Be sure to replace
your_domain.com with your actual domain.​
Nginx​
server {
 listen 80;
 server_name your_domain.com www.your_domain.com;

 location / {
 proxy_pass http://localhost:3000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }

 # Optimized static file serving
 location /_next/static/ {
 alias /path/to/your/nextjs-app/.next/static/;
 expires 1y;
 access_log off;
 }
}

2.​ Important: You must replace /path/to/your/nextjs-app/ with the actual absolute
path to your Next.js project directory on the server.

3.​ Save and close the file (Ctrl + X, Y, Enter).

Step 4: Enable the Configuration

Create a symbolic link to enable your new configuration file.

sudo ln -s /etc/nginx/sites-available/indus-search.conf /etc/nginx/sites-enabled/

Step 5: Test and Restart Nginx

Finally, test the Nginx configuration for syntax errors and restart the service to apply the
changes.

sudo nginx -t
sudo systemctl restart nginx

Your Next.js app will now be running and configured to communicate with your Typesense
instance via your secure Nginx reverse proxy.

Cerbot also same ssl install for the domain also. Use that same command add own search
engine domain.

Web Crawler Install

Note:- Make sure the web crawler need a fresh separate server because it take more memory,​
​
​
Then install the Nodejs using

To install NVM on Ubuntu, run this command:

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

After the installation is complete, close and reopen your terminal, or run source ~/.bashrc to
activate NVM.

Now, you can install the latest stable version of Node.js and npm:

nvm install --lts
nvm use --lts

Then upload the web bot script file then run this command​
​
npm install​
​
Then try to run the app.js for the webcrawler ,and image.js for image crawling,and imagenon.js
is same image crawl but need to install tensorflow​
​
​
To make the app.js and image.js run in background use pm2​
​
(before run install pm2 using “sudo npm install -g pm2”)​
​
Example if pm2 installed then run​

pm2 start app.js like pm2 start image.js​
​
Also make sure .env add the typesense details correctly.​

http://app.js
http://image.js
http://imagenon.js
http://app.js
http://image.js
http://app.js
http://image.js

And RESPECT_ROBOTS must be true , follow all urls robots.txt.​
​
​
​
Thats all done .​
​
​
Configure Website details

Log in to search engine url like (https://example.com/webadmin/auth)​
​
Make sure ALLOW_ADMIN_REGISTER should be true then first time you can see a
register option to create admin username and password then change the
ALLOW_ADMIN_REGISTER to false.

After success then go to login then login to see the dashboard, here all status can see.​
​

​
​
​

https://example.com/webadmin/auth

 ​ ​ ​ ​ ​ ​ Web Result :- Manage all Websites Results
 Image Results :- Manage all image Results

Website:- Add websites to crawler
User:-Manage all users

AdsManager:- Manage admin created ads
User Ads:- Manage user created ads
Ad analytics:- get all Analytics of ads

Setting:- All website details and color ,logo,seo

User Portal​
=======​

User ads center able to create user ads , topup wallet using Razorpay.
Also user can add there websites for crawler.

Disclaimer
If any copyright issue face while working the site we are not responsible.
 Endurasolution is not responsible for any copyright issues arising while using the
platform. All users must ensure compliance with legal terms and robots.txt rules.

	Step 1: Add the Typesense apt repository
	Step 2: Update your package list
	Step 3: Install Typesense
	Step 4: Configure and start Typesense
	Finding the API Key
	Step 1: Install Nginx
	Step 2: Configure the Nginx Reverse Proxy
	Step 3: Enable the Configuration
	Step 4: Test and Restart Nginx
	Prerequisites
	Step 1: Install Certbot and the Nginx plugin
	Step 2: Ensure Nginx configuration is correct
	Step 3: Allow HTTPS traffic through the firewall
	Step 4: Obtain and Install the SSL Certificate
	Step 5: Verify automatic renewal
	Step 1: Install Node.js
	Step 2: Upload a Next.js App Script
	Step 3: Install the Package
	Step 4: Configure the .env file
	Step 5: Start the Next.js Development Server
	Step 1: Build your Next.js application
	Step 2: Start your Next.js server
	Step 3: Configure Nginx as a Reverse Proxy
	Step 4: Enable the Configuration
	Step 5: Test and Restart Nginx

